Holomorphic Vertex Operator Algebras of Small Central Charges
نویسنده
چکیده
We provide a rigorous mathematical foundation to the study of strongly rational, holomorphic vertex operator algebras V of central charge c = 8, 16 and 24 initiated by Schellekens. If c = 8 or 16 we show that V is isomorphic to a lattice theory corresponding to a rank c even, self-dual lattice. If c = 24 we prove, among other things, that either V is isomorphic to a lattice theory corresponding to a Niemeier lattice or the Leech lattice, or else the Lie algebra on the weight one subspace V1 is semisimple (possibly 0) of Lie rank less than 24.
منابع مشابه
Rational Vertex Operator Algebras and the Effective Central Charge
We establish that the Lie algebra of weight one states in a (strongly) rational vertex operator algebra is reductive, and that its Lie rank l is bounded above by the effective central charge c̃. We show that lattice vertex operator algebras may be characterized by the equalities c̃ = l = c, and in particular holomorphic lattice theories may be characterized among all holomorphic vertex operator a...
متن کاملDeformation of central charges, vertex operator algebras whose Griess algebras are Jordan algebras
If a vertex operator algebra V = ⊕n=0Vn satisfies dimV0 = 1, V1 = 0, then V2 has a commutative (nonassociative) algebra structure called Griess algebra. One of the typical examples of commutative (nonassociative) algebras is a Jordan algebra. For example, the set Symd(C) of symmetric matrices of degree d becomes a Jordan algebra. On the other hand, in the theory of vertex operator algebras, cen...
متن کاملToward classfication of rational vertex operator algebras with central charges less than 1
The rational and C2-cofinite simple vertex operator algebras whose effective central charges and the central charges c are equal and less than 1 are classified. Such a vertex operator algebra is zero if c̃ < 0 and C if c̃ = 0. If c̃ > 0, it is an extension of discrete Virasoro vertex operator algebra L(cp,q, 0) by its irreducible modules. It is also proved that for any rational and C2-cofinite sim...
متن کاملHolomorphic Vertex Operator Algebras of Small Central Charge
We provide a rigorous mathematical foundation to the study of strongly rational, holomorphic vertex operator algebras V of central charge c = 8, 16 and 24 initiated by Schellekens. If c = 8 or 16 we show that V is isomorphic to a lattice theory corresponding to a rank c even, self-dual lattice. If c = 24 we prove, among other things, that either V is isomorphic to a lattice theory corresponding...
متن کاملChiral Deformations of Conformal Field Theories
We study general perturbations of two-dimensional conformal field theories by holomorphic fields. It is shown that the genus one partition function is controlled by a contact term (pre-Lie) algebra given in terms of the operator product expansion. These models have applications to vertex operator algebras, two-dimensional QCD, topological strings, holomorphic anomaly equations and modular prope...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1985